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Abstract

The intersection of Natural Language Process-
ing (NLP) and code generation presents sig-
nificant opportunities and challenges for the
development of software engineering tools.
This project explores advanced code generation
from natural language descriptions, integrat-
ing Retrieval-Augmented Generation (RAG),
multi-hop execution using error message, and
a novel model, Unlimiformer, to enhance the
effectiveness of code synthesis. Our approach
uniquely incorporates RAG to leverage exter-
nal code snippets and documentation, thereby
enriching the generated code’s relevance. Ad-
ditionally, we perform iterative generation with
error message to enhance the model perfor-
mance. Lastly, we show a proof of concept
for using Unlimiformer on top of CodeLlama,
designed to handle extended input lengths, ad-
dressing the constraints of traditional transform-
ers in handling longer inputs. We conducted
extensive experiments and error analyses us-
ing two benchmark datasets, HumanEval and
MBPP, which revealed improvements in code
accuracy. However, challenges such as com-
putational efficiency and the inconsistency in
output were identified.

1 Introduction

The field of artificial intelligence is continuously
evolving, especially at the intersection of NLP and
programming language generation. This area is
crucial for advancing software development and
enhancing how humans interact with computers. It
focuses on using large language models (LLMs) to
interpret human language and produce executable
code, aiming to reduce the gap between human
intent and machine action. Despite progress, the
sector faces challenges such as ensuring the accu-
racy of the generated code, incorporating external
data sources, and ensuring the models’ effective-
ness across different programming challenges.

* Everyone Contributed Equally—Alphabetical order

Our project is rooted in the dynamic field of
transforming natural language descriptions into
Python code, a domain that has experienced sub-
stantial advancements and yet presents numerous
ongoing challenges. We reviewed some existing
literature reveals the multifaceted nature of this
research area, which includes breakthroughs in
model architectures, refinements in methods of
evaluation, developments in interactive coding en-
vironments, and progress in retrieval-augmented
generation techniques.

Our aim is to advance the capability to generate
Python code from natural language inputs. We
begin our research by reproducing the findings
from CodeLlama (Roziére et al., 2024), which
established a benchmark for the current state of the
art. Our methodology involves an extensive review
and detailed error analysis of Code Llama’s perfor-
mance across various code generation tasks. This
analysis will serve as a solid foundation, provid-
ing a clear baseline against which we can measure
future enhancements and innovations in this field.

We integrated the principles of Retrieval-
Augmented Generation (RAG) (Lewis et al., 2021)
into the Code Llama framework. RAG, by leverag-
ing a vast repository of code snippets and documen-
tation, introduces an external knowledge dimen-
sion to the model, potentially enriching the gener-
ated code’s accuracy, relevance, and efficiency. We
also incorporated a error message feedback system,
where we executed generated code in the system
and feed the error message back to the large lan-
guage model in prompt for a regeneration in case
of code execution failure. To address the growing
size of input to the transformer, we incorporate Un-
limiformer (Bertsch et al., 2023) which is capable
of taking in unlimited length of prompt input.

These constructs the our project, a retrieval-
augmented execution-based code generation with
unlimiformer. We conducted experiments and com-
pared our system with the original Codellama we



reproduced, including architecture, performance of
code generation, and time cost of generation. We
analyzes the outcome of comparison, followed by
a discussion in this report.

2 Related Work

The “Code Llama: Open Foundation Models for
Code” paper introduces a code-trained and finetune
version of llama 2, which is CodeLlama, a code
generative model. It summarized training method
and finetuning strategies for codellama. There are
three versions of Code Llama: base version, in-
struct version, and python version. The base ver-
sion is fine-tuned with Infilling code training and
Long context fine-tuning. The instruct version is
trained based on base version with Instruction Fine-
tuning.

The “Unlimiformer: Long-Range Transformers
with Unlimited Length Input” paper introduces a
method to extend the capability of transformers to
process unlimited input lengths by integrating a
k-nearest neighbor (kNN) index that replaces tra-
ditional self-attention mechanisms with a retrieval-
based approach. Basically, it injects a kNN before
cross attention and retrieve tope k hidden states in
decoder layer, which replaces a traditional atten-
tion. This strategy allows sliding the window of
computing cross attention at top k hidden states,
which makes the input length not bounded when
computing attention. Unlimiformer is to manage
exceedingly long documents by focusing only on
the most relevant parts of the input, enhancing effi-
ciency and enabling the processing of documents
like entire books without truncation.

The “Retrieval-Based Neural Code Generation”
(Hayati et al., 2018) article explored enhancing
neural code generation models through the incor-
poration of retrieval-based techniques. To solve the
previous issues of challenges in memorizing large
structures, the author of the article proposed Re-
code, a novel methodology that leverages subtree
retrieval. This method allows for the explicit refer-
encing of existing code examples within a neural
code generation model, thereby addressing the chal-
lenge of generating accurate code for less frequent
phrases in natural language descriptions. By em-
ploying a dynamic-programming-based sentence
similarity scoring method for retrieval and then
extracting and utilizing n-gram action sequences
from the associated ASTs, Recode significantly en-
hances model performance on two code generation

tasks.

3 Architecture

3.1 Overview

The architecture of our project is structured into
three interconnected sections: retrieval, execution,
and unlimiformer, each playing a pivotal role in the
code generation process.

3.1.1 Retrieval

This component is tasked with gathering and
synthesizing information pertinent to the user’s
query. It searches through extensive stored data
documents in the database to retrieves top docu-
ments code snippets that can best inform and en-
hance the generated code, that is, most likely in
the database to support prompt as a reference code
answer.

3.1.2 Execution and Error Message Feedback

Once the code is generated, this section takes
over by running the code to test its functionality. If
the code executes successfully, the result is relayed
back to the user. In the case of execution failure,
this section captures the error message and feeds
it back into the model along with the problematic
code, that the model is to regenerate a answer based
on the new prompt. This feedback mechanism is
essential for iterative learning and improvement of
the code generation process.

3.1.3 Unlimiformer

With the execution and error message feedback,
the prompt for the model input is growing longer
as the feedback loops over. Where transfromers for
the model cannot take input as it grow to a longer
length, the Unlimiformer is integrated within the
core of the generation model,and is designed to han-
dle unlimited long error messages feedback from
the execution section. This capability is critical as
it allows the model to understand and analyze the
nature of the errors encountered during execution.

The interconnection between these sections is
designed to enhance the efficiency and accuracy
of code generation from natural language queries.
The entire architecture is illustrated in a model
structure, as shown in Figure 1.

3.2 Retrieval-Augmented Generation
3.2.1 Embedding Model

The embedding model is responsible for trans-
forming text to vectors. One should be aware that
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Figure 1: Architecture of the model

by this date, there is no embedding specifically
trained on code retrieval related task. We relied
on Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2023) for model selection. We
select the model based on three principles: latency,
performance, and embedding dimensions. In the
end, gte-large (Li et al., 2023) was chosen.

3.2.2 Retriever

We use FAISS (Johnson et al., 2019) as database
and retriever. FAISS is a library for efficient similar-
ity search and clustering of dense vectors. The doc-
uments are first embedded with embedding models,
then split using recursive text splitter based on em-
bedding models. The processed documents then
were used by FAISS to build a dense database. Re-
triever is built based on cosine similarity.

3.2.3 Reranking

After the retriever retrieves the k£ most rele-
vant documents, a cross-encoder based re-ranking
model was used to re-rank these documents. It
jointly encode both queries and documents using
neural model. The model precludes approximate
nearest neighbor lookup, so can only be used on
small number of candidates. The re-ranking model
that we use is Colbertv2.0 (Santhanam et al., 2022).
The retrieved documents - questions and solutions -

are then included in the input prompt.

3.3 Multi-hop Execution

We borrow the idea from reinforcement learn-
ing that the model can learn from its own mistakes
and perform better in the next iteration. Thus, we
introduce multi-hop generation. For each code gen-
eration task, instead feeding it into the model once,
we iterative feed it in together with previous iter-
ations’ generated code and their error message, if
any. We write evaluation methods to capture both
assertion errors and syntax errors and output de-
tailed error message and location, to provide with
the model more context. For instance, for

def minus(a, b): return a - 1
assert minus (2, 3) == -1
assert minus (-1, 1.3) == -2.3

the input of the next iteration would include the

code and the error message Test ‘assert
minus (-1, 1.3)==-2.3" failed:
Assertion error.

And for

def add(a, b): return a??p
assert add (2, 3) == 5
assert add (-1, 1) == 0



the output would indicate the syntax error
along with its location:
candidate code: 1invalid syntax
in code ’'def add(a, Db):
a??b’ on line 1 at position 24.

To balance performance and efficiency, we set
the max number of iterations to 3. Early terminal
would be performed if the generated code is error-
free. Note that only for the first iteration that we
feed in the RAG results, and for iterations 2 and 3,
we remove them from our prompt and only include
previous generated code and error messages.

Syntax error in

return

3.4 Unlimiformer

Given that our prompt now not only has the origi-
nal question in the docstring, but also include RAG
results or rounds of previous generated code and
error messages, our approach would be unfeasi-
ble if the input prompt is too long that it exceeds
the limit of the model. To remedy this, we utilize
Unlimiformer on top of CodelLlama. This setup
enables the handling of extremely long input, as in
our case with RAG results and error messages.

4 Experiment Settings

4.1 Dataset

We evaluate our model with two description-
to-code generation benchmarks for Python: Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al.,, 2021) . HumanEval comprises a variety
of programming problems with function signa-
tures, detailed docstrings, and test cases to assess a
model’s ability to generate correct and logical code.
In contrast, MBPP focuses on basic Python tasks
with descriptions, example inputs, and expected
outputs, testing foundational programming skills
and code completion accuracy. Both datasets are
crucial for benchmarking the capabilities of Al in
software development within an academic research
framework.

4.2 Database

For database used in RAG, we use the follow-
ing datasets to build our database. CodeNet (Puri
etal.,2021) is a is a large scale dataset with approx-
imately 14 million code samples, each of which is
an intended solution to one of 4000 coding prob-
lems. CodeContests (Li et al., 2022) is a com-
petitive programming dataset for machine-learning.
This dataset was used when training AlphaCode.
CodeXGLUE (Lu et al., 2021) stands for General

Language Understanding Evaluation benchmark
for CODE. It includes 14 datasets for 10 diversi-
fied code intelligence tasks covering scenarios like
code-to-code, text-to-code. CoNala (Yin et al.,
2018) comes from StackOverflow questions. Every
example has a natural language intent and its corre-
sponding Python snippet. CodeSQA (Huang et al.,
2021) (Code Search and Question Answering) in-
cludes 20,604 labels for pairs of natural language
queries and codes, each annotated by at least 3
human annotators.

4.3 Maetrics

The pass@k (Chen et al., 2021) metric is defined
as the probability that at least one of the top k-
generated code samples for a problem passes the
unit tests, presented in equation (4.3), where n
is the total number of samples, c is the number of
correct samples, and k is the number of top samples
considered.

[ ("ﬁ)]
pass@Qk =E |1 — =
;)
In practice, & = {1,10,100} are popular op-

tions. For simplicity, we evaluate our model on
k= {1,10}

4.4 Baseline

CodeLlama (Roziére et al., 2024) is a variant of
Llama2 (Touvron et al., 2023), designed for general
code synthesis and understanding. It was trained
on code filling, Python code dataset, and fine-tuned
to handle long-context. In this study, we are using
the 7B version of it, specializing on Python.

4.5 Prompt

We include the complete input prompt in Ap-
pendix A.

5 Result

Table 1 shows the result of experiment. We first
evaluated the baselines, as shown in row 1 of Ta-
ble. For authenticity, we placed the performance
figure reported in the original paper in row 2 as
reference. Then we conducted the experiment for
each modification made on the model. First, we
only add the retrieval system. However, the im-
provement in performance is not as expected. In
row 3, we see a ~ 3% improvement on all settings
comparing to reproduction result. Second, we only
add execution module. There is a more significant



improvement comparing to RAG system. Third,
We combine RAG and execution, there are still
improvement on the performance, yet the improve-
ment is not significant. There is even a decrement
in MBPP pass@ 10 performance. Finally, we eval-
uate the model combining RAG, execution, and
Unlimiformer. However, experiment failed with
reasons explained in section 6.3.

6 Analysis
6.1 RAG

Incorporating related examples into the prompt
via RAG has not significantly enhanced model per-
formance as anticipated, and has even lowered the
performance when error message is not integrated
in. This finding suggests that merely adding more
context to the prompt might not directly translate
to improved coding accuracy or efficiency. It raises
questions about the quality and relevance of the ex-
amples being retrieved and whether they are effec-
tively aligned with the specific coding challenges
posed.

We further look into the database, and we notice
that despite the comprehensiveness and size of the
database, the retrieved document, for the most of
the time, does not seemed to be highly relevant to
the query. The other problem with the database
is that not all text of the database is embedded in
the same form. Some contain only function header,
some contain docstring, while the rest contain de-
scription. Further investigation into the selection
and integration of these examples might be neces-
sary to optimize the impact of RAG on the model’s
performance.

6.2 Error Message

The error message most of the time is relevant
and helpful. However, there is still a considerable
amount of the time where the error message is hard
to interpret or irrelevant, as right now we are only
capturing the last occurrence of error, instead of the
entire error chain. Such a mechanism would work
well for syntax error for insufficient for logical
errors. Despite error message is provided, CodeL-
lama’s ability to interpret the message and based
on which fix the code is weaker than expected. One
possible reason is that CodeLLlama was not trained
on large amount of error message. Enhancing the
model’s training with a more diverse set of error
scenarios or considering a model with better error
interpretation capabilities could potentially address

this weakness.

6.3 Unlimiformer

Unfortunately, we are unable to evaluate the per-
formance of Unlimiformer. Although code gener-
ation works with CodeLlama with Unlimiformer,
with coherent code being generated, it somehow
sometimes removes the header from the output, un-
like the code generated by CodeLlama. Since such
behavior is inconsistent, we are unable to evaluate
the correctness of the code with the evaluate
package without manually checking each code.

For instance, for the question prompt:

def has_close_elements (numbers:
— List[float], threshold:
— float) —> bool:

""" Check if in given list of
numbers, are any two
numbers closer to each
other than given

threshold.

el

the generated code is

for number_list in numbers:
for i in
— range (len (number_list)) [1:]:
for j in
— range (len (number_list)))):
if abs (number list[i] -
— number_list[]])) <
— threshold:
return True

Also due to this reason, we did not run Unlimi-
former for pass@ 10 on HumanEval and on MBPP.

7 Limitation

As highlighted in the poster session, a signif-
icant limitation of our evaluation is its reliance
on relatively simple datasets — HumanEval and
MBPP. These datasets do not include imports of
complex packages such as numpy and pandas,
which are commonly used in practical program-
ming environments. This limitation could restrict
the generalizability of our model to real-world cod-
ing tasks that often require these libraries. One
potential alternative is to use the CoNaLa dataset
for evaluation. However, CoNaLa lacks method
headers, which are essential for our current evalua-
tion strategy that utilizes the HuggingFace evaluate
framework. Addressing this gap requires either



Model HumanEval MBPP
pass@1 pass@10 pass@] pass@10
CodeLlama7b - Reproduction 35.3% 64.6% 44.7% 66.9%
CodeLlama7b - Reported in Paper 38.4% 70.3% 47.6% 70.3%
RAG-Based, CodeLlama7b 38.0% 66.8% 48.1% 67.1%
ErrMsg, CodeLlama7b 38.3% 67.2% 50.5% 69.3%
RAG-Based, ErrMsg, Codel.lama7b 38.5% 67.6% 50.8% 68.8%

RAG-Based, ErrMsg, Unlimiformer, CodeLlama7b ? - - -

Table 1: Code Llama pass@k scores on HumanEval and MBPP. Reproduction represents the performance we
reproduce based on original paper. Reported in Paper represents the performance reported in the original paper.

RAG, ErrMsg, and Unlimiformer indicates the presence of specific module. Entries marked as

[T

and “?” are

experiments suspended due to reasons explained in section 6.3.

modifying the dataset to include method headers or
adapting our evaluation methods to accommodate
datasets without these headers. In addition, since
there are packages being imported, it would poten-
tially be helpful to retrieve the relevant examples
from the documentation or websites such as Stack
Overflow, but the requirement would be beyond the
scope of this project.

In addition, since we are utilizing RAG and
multi-hop generation techniques, we’ve observed
a notable decrease in performance speed. While
these methods effectively enhance code accuracy
and contextual relevance, they also significantly in-
crease computational load and latency. The added
complexity stems from the retrieval processes, the
ongoing evaluations during code generation, and
the management of progressively longer input se-
quences. This complexity is further compounded
in each iterative cycle as input size expands contin-
uously, necessitating more sophisticated and com-
putationally intensive mechanisms to preserve sys-
tem responsiveness and efficiency. Notably, the
integration of Unlimiformer, despite its benefits
in handling extensive inputs, results in generation
times that are approximately ten times slower than
when using CodeLlama alone.

8 Conclusion

In conclusion, this project aims to improve code
generation performance by integrating retrieval-
augmented generation and multi-hop execution-
based feedback into the coding process, with the
assistance of the Unlimiformer to handle long in-
puts. Our research’s goal is to enhance the per-
formance of Python code generation from natural
language descriptions by implementing these mod-
ules. Although the improvement in performance

is not significant, the project still provides solid
foundation in building an automated coding sys-
tems. We also provide a proof of concept for using
Unlimiformer on top of current code generation
models, potentially more beneficial in cases such
as repository-level code generation or conflict fix-
ing. Future work should focus on refining these ap-
proaches to handle more complex coding tasks and
reduce computational costs, while also exploring
the integration of more robust databases to improve
document relevance.
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Appendix A: Input Prompt

As mentioned in Section 3, our model takes in
RAG results for the first iteration and previous gen-
erated code and error messages for the second and
third iterations, in addition to the original prompt
in the docstring.

We include our input prompt here.

Iteration 1:

mmn

{question}

e

Here are some similar questions
— and their solutions:
{similar _question_1}:

— {solution_ 1}
{similar_question_2}:

- {solution_ 2}


http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1808.10025
http://arxiv.org/abs/1808.10025
http://arxiv.org/abs/2105.13239
http://arxiv.org/abs/2105.13239
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2210.07316
http://arxiv.org/abs/2210.07316
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2112.01488
http://arxiv.org/abs/2112.01488
http://arxiv.org/abs/2112.01488
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408

\"\"\"

mmn

Iteration & for k > 1:
mmn

{question}

AL

Here are some code with their
— error messages:
{previous_generated code_1}:
— {error_1}
{previous_generated code_2}:
— {error_2}

\"\"\"

mimamn

where the question is formatted as:
mimn
import
def xxx(param_ 1, param 2, ...):
\ "\ "\ n
(PROBLEM DESCRIPTION AS
— DOCSTRING)
\ "\ "\ n

mimn

Since CodeLlama?2 repeats whatever in the input as
the first part of output, we have to pass in a function
header as have the problem description in the doc-
string, so that the output text begins with a Python
function header - no need for further manual clean-
ing before we can evaluate its correctness.
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